×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Textbooks / Math / Discovering Geometry: An Investigative Approach 4

Discovering Geometry: An Investigative Approach 4th Edition - Solutions by Chapter

Full solutions for Discovering Geometry: An Investigative Approach | 4th Edition

ISBN: 9781559538824

Discovering Geometry: An Investigative Approach | 4th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 428 Reviews
Textbook: Discovering Geometry: An Investigative Approach
Edition: 4
Author: Michael Serra
ISBN: 9781559538824

This expansive textbook survival guide covers the following chapters: 112. Since problems from 112 chapters in Discovering Geometry: An Investigative Approach have been answered, more than 51356 students have viewed full step-by-step answer. Discovering Geometry: An Investigative Approach was written by and is associated to the ISBN: 9781559538824. This textbook survival guide was created for the textbook: Discovering Geometry: An Investigative Approach, edition: 4. The full step-by-step solution to problem in Discovering Geometry: An Investigative Approach were answered by , our top Math solution expert on 03/13/18, 07:09PM.

Key Math Terms and definitions covered in this textbook
  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Cayley-Hamilton Theorem.

    peA) = det(A - AI) has peA) = zero matrix.

  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.