 7.5.1: Construction The beautiful Cairo street tiling shown below uses equ...
 7.5.2: At right is Marjorie Rices first pentagonal tiling discovery. Anoth...
 7.5.3: A tessellation of regular hexagons can be used to create a pentagon...
 7.5.4: Can a concave quadrilateral like the one at right tile the plane? T...
 7.5.5: Write a paragraph proof explaining why you can use any triangle to ...
 7.5.6: Refer to the Cultural Connection on page 396 for Exercises 6 and 7 ...
 7.5.7: Refer to the Cultural Connection on page 396 for Exercises 6 and 7 ...
 7.5.8: Refer to the Cultural Connection on page 396 for Exercises 6 and 7 ...
Solutions for Chapter 7.5: Tessellations with Nonregular Polygons
Full solutions for Discovering Geometry: An Investigative Approach  4th Edition
ISBN: 9781559538824
Solutions for Chapter 7.5: Tessellations with Nonregular Polygons
Get Full SolutionsThis textbook survival guide was created for the textbook: Discovering Geometry: An Investigative Approach, edition: 4. This expansive textbook survival guide covers the following chapters and their solutions. Since 8 problems in chapter 7.5: Tessellations with Nonregular Polygons have been answered, more than 22368 students have viewed full stepbystep solutions from this chapter. Chapter 7.5: Tessellations with Nonregular Polygons includes 8 full stepbystep solutions. Discovering Geometry: An Investigative Approach was written by and is associated to the ISBN: 9781559538824.

Associative Law (AB)C = A(BC).
Parentheses can be removed to leave ABC.

Change of basis matrix M.
The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

Covariance matrix:E.
When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x  x) (x  x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.
Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

Ellipse (or ellipsoid) x T Ax = 1.
A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA1 yll2 = Y T(AAT)1 Y = 1 displayed by eigshow; axis lengths ad

Fundamental Theorem.
The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n  r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

Hypercube matrix pl.
Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

Identity matrix I (or In).
Diagonal entries = 1, offdiagonal entries = 0.

Inverse matrix AI.
Square matrix with AI A = I and AAl = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B1 AI and (AI)T. Cofactor formula (Al)ij = Cji! detA.

Krylov subspace Kj(A, b).
The subspace spanned by b, Ab, ... , AjIb. Numerical methods approximate A I b by x j with residual b  Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

Left inverse A+.
If A has full column rank n, then A+ = (AT A)I AT has A+ A = In.

Linear transformation T.
Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

Matrix multiplication AB.
The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

Partial pivoting.
In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

Pivot columns of A.
Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

Projection matrix P onto subspace S.
Projection p = P b is the closest point to b in S, error e = b  Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) 1 AT.

Rotation matrix
R = [~ CS ] rotates the plane by () and R 1 = RT rotates back by (). Eigenvalues are eiO and eiO , eigenvectors are (1, ±i). c, s = cos (), sin ().

Similar matrices A and B.
Every B = MI AM has the same eigenvalues as A.

Tridiagonal matrix T: tij = 0 if Ii  j I > 1.
T 1 has rank 1 above and below diagonal.

Vandermonde matrix V.
V c = b gives coefficients of p(x) = Co + ... + Cn_IXn 1 with P(Xi) = bi. Vij = (Xi)jI and det V = product of (Xk  Xi) for k > i.