×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 3.1: Homogeneous Differential Equations with Constant Coefficients

Elementary Differential Equations and Boundary Value Problems | 11th Edition | ISBN: 9781119256007 | Authors: Boyce, Diprima, Meade

Full solutions for Elementary Differential Equations and Boundary Value Problems | 11th Edition

ISBN: 9781119256007

Elementary Differential Equations and Boundary Value Problems | 11th Edition | ISBN: 9781119256007 | Authors: Boyce, Diprima, Meade

Solutions for Chapter 3.1: Homogeneous Differential Equations with Constant Coefficients

Solutions for Chapter 3.1
4 5 0 357 Reviews
22
4
Textbook: Elementary Differential Equations and Boundary Value Problems
Edition: 11
Author: Boyce, Diprima, Meade
ISBN: 9781119256007

This expansive textbook survival guide covers the following chapters and their solutions. Chapter 3.1: Homogeneous Differential Equations with Constant Coefficients includes 21 full step-by-step solutions. Since 21 problems in chapter 3.1: Homogeneous Differential Equations with Constant Coefficients have been answered, more than 12629 students have viewed full step-by-step solutions from this chapter. Elementary Differential Equations and Boundary Value Problems was written by and is associated to the ISBN: 9781119256007. This textbook survival guide was created for the textbook: Elementary Differential Equations and Boundary Value Problems, edition: 11.

Key Math Terms and definitions covered in this textbook
  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Covariance matrix:E.

    When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x - x) (x - x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Distributive Law

    A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Polar decomposition A = Q H.

    Orthogonal Q times positive (semi)definite H.

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Symmetric matrix A.

    The transpose is AT = A, and aU = a ji. A-I is also symmetric.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password