×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 5.2: Series Solutions Near an Ordinary Point, Part I

Elementary Differential Equations and Boundary Value Problems | 11th Edition | ISBN: 9781119256007 | Authors: Boyce, Diprima, Meade

Full solutions for Elementary Differential Equations and Boundary Value Problems | 11th Edition

ISBN: 9781119256007

Elementary Differential Equations and Boundary Value Problems | 11th Edition | ISBN: 9781119256007 | Authors: Boyce, Diprima, Meade

Solutions for Chapter 5.2: Series Solutions Near an Ordinary Point, Part I

Solutions for Chapter 5.2
4 5 0 246 Reviews
13
4
Textbook: Elementary Differential Equations and Boundary Value Problems
Edition: 11
Author: Boyce, Diprima, Meade
ISBN: 9781119256007

This expansive textbook survival guide covers the following chapters and their solutions. Chapter 5.2: Series Solutions Near an Ordinary Point, Part I includes 23 full step-by-step solutions. Since 23 problems in chapter 5.2: Series Solutions Near an Ordinary Point, Part I have been answered, more than 12655 students have viewed full step-by-step solutions from this chapter. Elementary Differential Equations and Boundary Value Problems was written by and is associated to the ISBN: 9781119256007. This textbook survival guide was created for the textbook: Elementary Differential Equations and Boundary Value Problems, edition: 11.

Key Math Terms and definitions covered in this textbook
  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Condition number

    cond(A) = c(A) = IIAIlIIA-III = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib IIĀ· Condition numbers measure the sensitivity of the output to change in the input.

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • Hilbert matrix hilb(n).

    Entries HU = 1/(i + j -1) = Jd X i- 1 xj-1dx. Positive definite but extremely small Amin and large condition number: H is ill-conditioned.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Semidefinite matrix A.

    (Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password