 8.6.1: To obtain some idea of the possible dangers of small errors in the ...
 8.6.2: Consider the initial value problem y_ = t2 + ey , y(0) = 0. a. Let ...
 8.6.3: Consider again the initial value problem (16) from Example 2. Inves...
 8.6.4: Consider the initial value problem y_ = 10y + 2.5t2 + 0.5t, y(0) = ...
 8.6.5: In each of 5 and 6: a. Find a formula for the solution of the initi...
 8.6.6: In each of 5 and 6: a. Find a formula for the solution of the initi...
Solutions for Chapter 8.6: More on Errors; Stability
Full solutions for Elementary Differential Equations and Boundary Value Problems  11th Edition
ISBN: 9781119256007
Solutions for Chapter 8.6: More on Errors; Stability
Get Full SolutionsSince 6 problems in chapter 8.6: More on Errors; Stability have been answered, more than 13823 students have viewed full stepbystep solutions from this chapter. Elementary Differential Equations and Boundary Value Problems was written by and is associated to the ISBN: 9781119256007. Chapter 8.6: More on Errors; Stability includes 6 full stepbystep solutions. This textbook survival guide was created for the textbook: Elementary Differential Equations and Boundary Value Problems, edition: 11. This expansive textbook survival guide covers the following chapters and their solutions.

Adjacency matrix of a graph.
Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

CayleyHamilton Theorem.
peA) = det(A  AI) has peA) = zero matrix.

Cholesky factorization
A = CTC = (L.J]))(L.J]))T for positive definite A.

Conjugate Gradient Method.
A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax  x Tb over growing Krylov subspaces.

Covariance matrix:E.
When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x  x) (x  x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.
Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

Elimination.
A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).
Use AT for complex A.

Full row rank r = m.
Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

Linear combination cv + d w or L C jV j.
Vector addition and scalar multiplication.

Nilpotent matrix N.
Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

Orthonormal vectors q 1 , ... , q n·
Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q 1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

Particular solution x p.
Any solution to Ax = b; often x p has free variables = o.

Positive definite matrix A.
Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

Rank r (A)
= number of pivots = dimension of column space = dimension of row space.

Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.
Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

Reduced row echelon form R = rref(A).
Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

Simplex method for linear programming.
The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

Skewsymmetric matrix K.
The transpose is K, since Kij = Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

Symmetric matrix A.
The transpose is AT = A, and aU = a ji. AI is also symmetric.