×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 9.2: Autonomous Systems and Stability

Elementary Differential Equations and Boundary Value Problems | 11th Edition | ISBN: 9781119256007 | Authors: Boyce, Diprima, Meade

Full solutions for Elementary Differential Equations and Boundary Value Problems | 11th Edition

ISBN: 9781119256007

Elementary Differential Equations and Boundary Value Problems | 11th Edition | ISBN: 9781119256007 | Authors: Boyce, Diprima, Meade

Solutions for Chapter 9.2: Autonomous Systems and Stability

Solutions for Chapter 9.2
4 5 0 386 Reviews
21
3
Textbook: Elementary Differential Equations and Boundary Value Problems
Edition: 11
Author: Boyce, Diprima, Meade
ISBN: 9781119256007

This expansive textbook survival guide covers the following chapters and their solutions. Elementary Differential Equations and Boundary Value Problems was written by and is associated to the ISBN: 9781119256007. Since 24 problems in chapter 9.2: Autonomous Systems and Stability have been answered, more than 12406 students have viewed full step-by-step solutions from this chapter. Chapter 9.2: Autonomous Systems and Stability includes 24 full step-by-step solutions. This textbook survival guide was created for the textbook: Elementary Differential Equations and Boundary Value Problems, edition: 11.

Key Math Terms and definitions covered in this textbook
  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Cyclic shift

    S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

  • Distributive Law

    A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Fast Fourier Transform (FFT).

    A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn-1c can be computed with ne/2 multiplications. Revolutionary.

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Polar decomposition A = Q H.

    Orthogonal Q times positive (semi)definite H.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Stiffness matrix

    If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password