×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 5.3: Series Solutions Near an Ordinary Point, Part II

Full solutions for Elementary Differential Equations | 10th Edition

ISBN: 9780470458327

Solutions for Chapter 5.3: Series Solutions Near an Ordinary Point, Part II

Solutions for Chapter 5.3
4 5 0 349 Reviews
18
2
Textbook: Elementary Differential Equations
Edition: 10
Author: William E. Boyce, Richard C. DiPrima
ISBN: 9780470458327

Chapter 5.3: Series Solutions Near an Ordinary Point, Part II includes 29 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Since 29 problems in chapter 5.3: Series Solutions Near an Ordinary Point, Part II have been answered, more than 11633 students have viewed full step-by-step solutions from this chapter. Elementary Differential Equations was written by and is associated to the ISBN: 9780470458327. This textbook survival guide was created for the textbook: Elementary Differential Equations, edition: 10.

Key Math Terms and definitions covered in this textbook
  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Linearly dependent VI, ... , Vn.

    A combination other than all Ci = 0 gives L Ci Vi = O.

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Orthogonal matrix Q.

    Square matrix with orthonormal columns, so QT = Q-l. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password