×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 8.2: Improvements on the Euler Method

Full solutions for Elementary Differential Equations and Boundary Value Problems | 9th Edition

ISBN: 9780470383346

Solutions for Chapter 8.2: Improvements on the Euler Method

Solutions for Chapter 8.2
4 5 0 306 Reviews
23
0
Textbook: Elementary Differential Equations and Boundary Value Problems
Edition: 9
Author: Boyce, Richard C. DiPrima
ISBN: 9780470383346

Since 26 problems in chapter 8.2: Improvements on the Euler Method have been answered, more than 13209 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 8.2: Improvements on the Euler Method includes 26 full step-by-step solutions. This textbook survival guide was created for the textbook: Elementary Differential Equations and Boundary Value Problems, edition: 9. Elementary Differential Equations and Boundary Value Problems was written by and is associated to the ISBN: 9780470383346.

Key Math Terms and definitions covered in this textbook
  • Cayley-Hamilton Theorem.

    peA) = det(A - AI) has peA) = zero matrix.

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Condition number

    cond(A) = c(A) = IIAIlIIA-III = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Lucas numbers

    Ln = 2,J, 3, 4, ... satisfy Ln = L n- l +Ln- 2 = A1 +A~, with AI, A2 = (1 ± -/5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Outer product uv T

    = column times row = rank one matrix.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password