×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Textbooks / Math / Elementary Linear Algebra: Applications Version 10

Elementary Linear Algebra: Applications Version 10th Edition - Solutions by Chapter

Full solutions for Elementary Linear Algebra: Applications Version | 10th Edition

ISBN: 9780470432051

Elementary Linear Algebra: Applications Version | 10th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 430 Reviews
Textbook: Elementary Linear Algebra: Applications Version
Edition: 10
Author: Howard Anton, Chris Rorres
ISBN: 9780470432051

This expansive textbook survival guide covers the following chapters: 83. The full step-by-step solution to problem in Elementary Linear Algebra: Applications Version were answered by , our top Math solution expert on 03/13/18, 08:29PM. Elementary Linear Algebra: Applications Version was written by and is associated to the ISBN: 9780470432051. Since problems from 83 chapters in Elementary Linear Algebra: Applications Version have been answered, more than 25681 students have viewed full step-by-step answer. This textbook survival guide was created for the textbook: Elementary Linear Algebra: Applications Version, edition: 10.

Key Math Terms and definitions covered in this textbook
  • Basis for V.

    Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Distributive Law

    A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Inverse matrix A-I.

    Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Polar decomposition A = Q H.

    Orthogonal Q times positive (semi)definite H.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Semidefinite matrix A.

    (Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B IIĀ·

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).