×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 5.3: Complex Vector Spaces

Full solutions for Elementary Linear Algebra: Applications Version | 10th Edition

ISBN: 9780470432051

Solutions for Chapter 5.3: Complex Vector Spaces

Solutions for Chapter 5.3
4 5 0 338 Reviews
27
2
Textbook: Elementary Linear Algebra: Applications Version
Edition: 10
Author: Howard Anton, Chris Rorres
ISBN: 9780470432051

Chapter 5.3: Complex Vector Spaces includes 42 full step-by-step solutions. This textbook survival guide was created for the textbook: Elementary Linear Algebra: Applications Version, edition: 10. This expansive textbook survival guide covers the following chapters and their solutions. Elementary Linear Algebra: Applications Version was written by and is associated to the ISBN: 9780470432051. Since 42 problems in chapter 5.3: Complex Vector Spaces have been answered, more than 13834 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Distributive Law

    A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Inverse matrix A-I.

    Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Norm

    IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Pivot.

    The diagonal entry (first nonzero) at the time when a row is used in elimination.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password