×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 1.9: Applications of Linear Systems

Full solutions for Elementary Linear Algebra, Binder Ready Version: Applications Version | 11th Edition

ISBN: 9781118474228

Solutions for Chapter 1.9: Applications of Linear Systems

Solutions for Chapter 1.9
4 5 0 424 Reviews
15
4
Textbook: Elementary Linear Algebra, Binder Ready Version: Applications Version
Edition: 11
Author: Howard Anton, Chris Rorres
ISBN: 9781118474228

This textbook survival guide was created for the textbook: Elementary Linear Algebra, Binder Ready Version: Applications Version, edition: 11. This expansive textbook survival guide covers the following chapters and their solutions. Since 18 problems in chapter 1.9: Applications of Linear Systems have been answered, more than 16782 students have viewed full step-by-step solutions from this chapter. Elementary Linear Algebra, Binder Ready Version: Applications Version was written by and is associated to the ISBN: 9781118474228. Chapter 1.9: Applications of Linear Systems includes 18 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Column space C (A) =

    space of all combinations of the columns of A.

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Norm

    IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b - Ax) = o.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Polar decomposition A = Q H.

    Orthogonal Q times positive (semi)definite H.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Symmetric matrix A.

    The transpose is AT = A, and aU = a ji. A-I is also symmetric.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password