×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 5.2: Diagonalization

Full solutions for Elementary Linear Algebra, Binder Ready Version: Applications Version | 11th Edition

ISBN: 9781118474228

Solutions for Chapter 5.2: Diagonalization

Solutions for Chapter 5.2
4 5 0 367 Reviews
10
2
Textbook: Elementary Linear Algebra, Binder Ready Version: Applications Version
Edition: 11
Author: Howard Anton, Chris Rorres
ISBN: 9781118474228

This textbook survival guide was created for the textbook: Elementary Linear Algebra, Binder Ready Version: Applications Version, edition: 11. Since 41 problems in chapter 5.2: Diagonalization have been answered, more than 15824 students have viewed full step-by-step solutions from this chapter. Elementary Linear Algebra, Binder Ready Version: Applications Version was written by and is associated to the ISBN: 9781118474228. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 5.2: Diagonalization includes 41 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Back substitution.

    Upper triangular systems are solved in reverse order Xn to Xl.

  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Companion matrix.

    Put CI, ... ,Cn in row n and put n - 1 ones just above the main diagonal. Then det(A - AI) = ±(CI + c2A + C3A 2 + .•. + cnA n-l - An).

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Orthogonal matrix Q.

    Square matrix with orthonormal columns, so QT = Q-l. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Sum V + W of subs paces.

    Space of all (v in V) + (w in W). Direct sum: V n W = to}.

  • Symmetric matrix A.

    The transpose is AT = A, and aU = a ji. A-I is also symmetric.

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password