×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 6: Inner Product Spaces

Full solutions for Elementary Linear Algebra, Binder Ready Version: Applications Version | 11th Edition

ISBN: 9781118474228

Solutions for Chapter 6: Inner Product Spaces

Solutions for Chapter 6
4 5 0 287 Reviews
15
2
Textbook: Elementary Linear Algebra, Binder Ready Version: Applications Version
Edition: 11
Author: Howard Anton, Chris Rorres
ISBN: 9781118474228

Since 21 problems in chapter 6: Inner Product Spaces have been answered, more than 16908 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Elementary Linear Algebra, Binder Ready Version: Applications Version, edition: 11. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 6: Inner Product Spaces includes 21 full step-by-step solutions. Elementary Linear Algebra, Binder Ready Version: Applications Version was written by and is associated to the ISBN: 9781118474228.

Key Math Terms and definitions covered in this textbook
  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Symmetric matrix A.

    The transpose is AT = A, and aU = a ji. A-I is also symmetric.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password