 10.5.1: Construct the vertex matrix for each of the directed graphs illustr...
 10.5.2: Draw a diagram of the directed graph corresponding to each of the f...
 10.5.3: Let M be the following vertex matrix of a directed graph: 0111 1000...
 10.5.4: (a) Compute the matrix product MTM for the vertex matrix M in Examp...
 10.5.5: By inspection, locate all cliques in each of the directed graphs il...
 10.5.6: For each of the following vertex matrices, use Theorem 10.5.2 to fi...
 10.5.7: For the dominancedirected graph illustrated in Figure Ex7 constru...
 10.5.8: Five baseball teams play each other one time with the following res...
 10.5.T1: A graph having n vertices such that every vertex is connected to ev...
 10.5.T2: Consider a roundrobin tournament among n players (labeled a1, a2, ...
Solutions for Chapter 10.5: GraphTheory
Full solutions for Elementary Linear Algebra, Binder Ready Version: Applications Version  11th Edition
ISBN: 9781118474228
Solutions for Chapter 10.5: GraphTheory
Get Full SolutionsThis expansive textbook survival guide covers the following chapters and their solutions. Chapter 10.5: GraphTheory includes 10 full stepbystep solutions. This textbook survival guide was created for the textbook: Elementary Linear Algebra, Binder Ready Version: Applications Version, edition: 11. Elementary Linear Algebra, Binder Ready Version: Applications Version was written by and is associated to the ISBN: 9781118474228. Since 10 problems in chapter 10.5: GraphTheory have been answered, more than 15048 students have viewed full stepbystep solutions from this chapter.

Affine transformation
Tv = Av + Vo = linear transformation plus shift.

Complete solution x = x p + Xn to Ax = b.
(Particular x p) + (x n in nullspace).

Cyclic shift
S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

Echelon matrix U.
The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

Ellipse (or ellipsoid) x T Ax = 1.
A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA1 yll2 = Y T(AAT)1 Y = 1 displayed by eigshow; axis lengths ad

Hankel matrix H.
Constant along each antidiagonal; hij depends on i + j.

Hilbert matrix hilb(n).
Entries HU = 1/(i + j 1) = Jd X i 1 xj1dx. Positive definite but extremely small Amin and large condition number: H is illconditioned.

Independent vectors VI, .. " vk.
No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

Krylov subspace Kj(A, b).
The subspace spanned by b, Ab, ... , AjIb. Numerical methods approximate A I b by x j with residual b  Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

Orthonormal vectors q 1 , ... , q n·
Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q 1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

Outer product uv T
= column times row = rank one matrix.

Pivot.
The diagonal entry (first nonzero) at the time when a row is used in elimination.

Positive definite matrix A.
Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

Projection matrix P onto subspace S.
Projection p = P b is the closest point to b in S, error e = b  Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) 1 AT.

Reduced row echelon form R = rref(A).
Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

Saddle point of I(x}, ... ,xn ).
A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

Similar matrices A and B.
Every B = MI AM has the same eigenvalues as A.

Sum V + W of subs paces.
Space of all (v in V) + (w in W). Direct sum: V n W = to}.

Vandermonde matrix V.
V c = b gives coefficients of p(x) = Co + ... + Cn_IXn 1 with P(Xi) = bi. Vij = (Xi)jI and det V = product of (Xk  Xi) for k > i.

Wavelets Wjk(t).
Stretch and shift the time axis to create Wjk(t) = woo(2j t  k).