 10.17.1: Let a certain animal population be divided into three 1year age cl...
 10.17.2: For the optimal sustainable harvesting policy described by Equation...
 10.17.3: Use Equation (10) to show that if only the first age class of an an...
 10.17.4: If only the I th class of an animal population is to be periodicall...
 10.17.5: Suppose that all of the J th class and a certain fraction hI of the...
 10.17.T1: The results of Theorem 10.17.1 suggest the following algorithm for ...
 10.17.T2: Using the algorithm in Exercise T1, do the oneageclass calculatio...
Solutions for Chapter 10.17: Harvesting of Animal Populations
Full solutions for Elementary Linear Algebra, Binder Ready Version: Applications Version  11th Edition
ISBN: 9781118474228
Solutions for Chapter 10.17: Harvesting of Animal Populations
Get Full SolutionsElementary Linear Algebra, Binder Ready Version: Applications Version was written by and is associated to the ISBN: 9781118474228. This textbook survival guide was created for the textbook: Elementary Linear Algebra, Binder Ready Version: Applications Version, edition: 11. This expansive textbook survival guide covers the following chapters and their solutions. Since 7 problems in chapter 10.17: Harvesting of Animal Populations have been answered, more than 17105 students have viewed full stepbystep solutions from this chapter. Chapter 10.17: Harvesting of Animal Populations includes 7 full stepbystep solutions.

Big formula for n by n determinants.
Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or  sign.

Circulant matrix C.
Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn  l . Cx = convolution c * x. Eigenvectors in F.

Cramer's Rule for Ax = b.
B j has b replacing column j of A; x j = det B j I det A

Ellipse (or ellipsoid) x T Ax = 1.
A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA1 yll2 = Y T(AAT)1 Y = 1 displayed by eigshow; axis lengths ad

Factorization
A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

Fast Fourier Transform (FFT).
A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn1c can be computed with ne/2 multiplications. Revolutionary.

Full row rank r = m.
Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

Graph G.
Set of n nodes connected pairwise by m edges. A complete graph has all n(n  1)/2 edges between nodes. A tree has only n  1 edges and no closed loops.

Hessenberg matrix H.
Triangular matrix with one extra nonzero adjacent diagonal.

Indefinite matrix.
A symmetric matrix with eigenvalues of both signs (+ and  ).

Independent vectors VI, .. " vk.
No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

Krylov subspace Kj(A, b).
The subspace spanned by b, Ab, ... , AjIb. Numerical methods approximate A I b by x j with residual b  Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

Norm
IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.
Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

Schwarz inequality
Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

Similar matrices A and B.
Every B = MI AM has the same eigenvalues as A.

Standard basis for Rn.
Columns of n by n identity matrix (written i ,j ,k in R3).

Stiffness matrix
If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

Subspace S of V.
Any vector space inside V, including V and Z = {zero vector only}.

Tridiagonal matrix T: tij = 0 if Ii  j I > 1.
T 1 has rank 1 above and below diagonal.