×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 5: The Mathematics of Getting Around

Full solutions for Excursions in Modern Mathematics | 8th Edition

ISBN: 9781292022048

Solutions for Chapter 5: The Mathematics of Getting Around

Solutions for Chapter 5
4 5 0 259 Reviews
19
2
Textbook: Excursions in Modern Mathematics
Edition: 8
Author: Peter Tannenbaum
ISBN: 9781292022048

This expansive textbook survival guide covers the following chapters and their solutions. Chapter 5: The Mathematics of Getting Around includes 75 full step-by-step solutions. This textbook survival guide was created for the textbook: Excursions in Modern Mathematics, edition: 8. Since 75 problems in chapter 5: The Mathematics of Getting Around have been answered, more than 13340 students have viewed full step-by-step solutions from this chapter. Excursions in Modern Mathematics was written by and is associated to the ISBN: 9781292022048.

Key Math Terms and definitions covered in this textbook
  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Back substitution.

    Upper triangular systems are solved in reverse order Xn to Xl.

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Distributive Law

    A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Fast Fourier Transform (FFT).

    A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn-1c can be computed with ne/2 multiplications. Revolutionary.

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)ยท(b - Ax) = o.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password