×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 8.3: Bayes Theorem

Full solutions for Finite Mathematics, Binder Ready Version: An Applied Approach | 11th Edition

ISBN: 9780470876398

Solutions for Chapter 8.3: Bayes Theorem

Solutions for Chapter 8.3
4 5 0 263 Reviews
12
2
Textbook: Finite Mathematics, Binder Ready Version: An Applied Approach
Edition: 11
Author: Michael Sullivan
ISBN: 9780470876398

This textbook survival guide was created for the textbook: Finite Mathematics, Binder Ready Version: An Applied Approach, edition: 11. This expansive textbook survival guide covers the following chapters and their solutions. Finite Mathematics, Binder Ready Version: An Applied Approach was written by and is associated to the ISBN: 9780470876398. Since 54 problems in chapter 8.3: Bayes Theorem have been answered, more than 16729 students have viewed full step-by-step solutions from this chapter. Chapter 8.3: Bayes Theorem includes 54 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Cayley-Hamilton Theorem.

    peA) = det(A - AI) has peA) = zero matrix.

  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Lucas numbers

    Ln = 2,J, 3, 4, ... satisfy Ln = L n- l +Ln- 2 = A1 +A~, with AI, A2 = (1 ± -/5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Spectrum of A = the set of eigenvalues {A I, ... , An}.

    Spectral radius = max of IAi I.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password