 Chapter 1: Mathematical Induction
 Chapter 10: FROM CAESAR CIPHER TO PUBLIC KEY CRYPTOGRAPHY
 Chapter 11: PERFECT NUMBERS
 Chapter 12: THE EQUATION x2 + y2 = z2
 Chapter 13: SUMS OF TWO SQUARES
 Chapter 14: THE FIBONACCI SEQUENCE
 Chapter 15: FINITE CONTINUED FRACTIONS
 Chapter 16: PRIMALITY TESTING AND FACTORIZATION
 Chapter 2: EARLY NUMBER THEORY
 Chapter 3: THE FUNDAMENTAL THEOREM OF ARITHMETIC
 Chapter 4: BASIC PROPERTIES OF CONGRUENCE
 Chapter 5: FERMAT'S LITTLE THEOREM AND PSEUDOPRIMES
 Chapter 6: THE SUM AND NUMBER OF DIVISORS
 Chapter 7: EULER'S PHIFUNCTION
 Chapter 8: THE ORDER OF AN INTEGER MODULO n
 Chapter 9: EULER'S CRITERION
Elementary Number Theory 7th Edition  Solutions by Chapter
Full solutions for Elementary Number Theory  7th Edition
ISBN: 9780073383149
Elementary Number Theory  7th Edition  Solutions by Chapter
Get Full SolutionsThe full stepbystep solution to problem in Elementary Number Theory were answered by , our top Math solution expert on 03/14/18, 05:19PM. Elementary Number Theory was written by and is associated to the ISBN: 9780073383149. Since problems from 16 chapters in Elementary Number Theory have been answered, more than 1156 students have viewed full stepbystep answer. This textbook survival guide was created for the textbook: Elementary Number Theory, edition: 7. This expansive textbook survival guide covers the following chapters: 16.

Adjacency matrix of a graph.
Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

Big formula for n by n determinants.
Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or  sign.

Change of basis matrix M.
The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

Column picture of Ax = b.
The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

Commuting matrices AB = BA.
If diagonalizable, they share n eigenvectors.

Companion matrix.
Put CI, ... ,Cn in row n and put n  1 ones just above the main diagonal. Then det(A  AI) = ±(CI + c2A + C3A 2 + .•. + cnA nl  An).

Complete solution x = x p + Xn to Ax = b.
(Particular x p) + (x n in nullspace).

Complex conjugate
z = a  ib for any complex number z = a + ib. Then zz = Iz12.

Cramer's Rule for Ax = b.
B j has b replacing column j of A; x j = det B j I det A

Elimination.
A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).
Use AT for complex A.

Hankel matrix H.
Constant along each antidiagonal; hij depends on i + j.

Permutation matrix P.
There are n! orders of 1, ... , n. The n! P 's have the rows of I in those orders. P A puts the rows of A in the same order. P is even or odd (det P = 1 or 1) based on the number of row exchanges to reach I.

Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.
Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

Rotation matrix
R = [~ CS ] rotates the plane by () and R 1 = RT rotates back by (). Eigenvalues are eiO and eiO , eigenvectors are (1, ±i). c, s = cos (), sin ().

Row picture of Ax = b.
Each equation gives a plane in Rn; the planes intersect at x.

Schur complement S, D  C A } B.
Appears in block elimination on [~ g ].

Special solutions to As = O.
One free variable is Si = 1, other free variables = o.

Spectrum of A = the set of eigenvalues {A I, ... , An}.
Spectral radius = max of IAi I.

Vector addition.
v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.
I don't want to reset my password
Need help? Contact support
Having trouble accessing your account? Let us help you, contact support at +1(510) 9441054 or support@studysoup.com
Forgot password? Reset it here