 Chapter 1: Mathematical Induction
 Chapter 10: FROM CAESAR CIPHER TO PUBLIC KEY CRYPTOGRAPHY
 Chapter 11: PERFECT NUMBERS
 Chapter 12: THE EQUATION x2 + y2 = z2
 Chapter 13: SUMS OF TWO SQUARES
 Chapter 14: THE FIBONACCI SEQUENCE
 Chapter 15: FINITE CONTINUED FRACTIONS
 Chapter 16: PRIMALITY TESTING AND FACTORIZATION
 Chapter 2: EARLY NUMBER THEORY
 Chapter 3: THE FUNDAMENTAL THEOREM OF ARITHMETIC
 Chapter 4: BASIC PROPERTIES OF CONGRUENCE
 Chapter 5: FERMAT'S LITTLE THEOREM AND PSEUDOPRIMES
 Chapter 6: THE SUM AND NUMBER OF DIVISORS
 Chapter 7: EULER'S PHIFUNCTION
 Chapter 8: THE ORDER OF AN INTEGER MODULO n
 Chapter 9: EULER'S CRITERION
Elementary Number Theory 7th Edition  Solutions by Chapter
Full solutions for Elementary Number Theory  7th Edition
ISBN: 9780073383149
Elementary Number Theory  7th Edition  Solutions by Chapter
Get Full SolutionsThe full stepbystep solution to problem in Elementary Number Theory were answered by , our top Math solution expert on 03/14/18, 05:19PM. Elementary Number Theory was written by and is associated to the ISBN: 9780073383149. Since problems from 16 chapters in Elementary Number Theory have been answered, more than 1640 students have viewed full stepbystep answer. This textbook survival guide was created for the textbook: Elementary Number Theory, edition: 7. This expansive textbook survival guide covers the following chapters: 16.

Big formula for n by n determinants.
Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or  sign.

Condition number
cond(A) = c(A) = IIAIlIIAIII = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

Exponential eAt = I + At + (At)2 12! + ...
has derivative AeAt; eAt u(O) solves u' = Au.

Factorization
A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

GaussJordan method.
Invert A by row operations on [A I] to reach [I AI].

Hermitian matrix A H = AT = A.
Complex analog a j i = aU of a symmetric matrix.

Hypercube matrix pl.
Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

Identity matrix I (or In).
Diagonal entries = 1, offdiagonal entries = 0.

Least squares solution X.
The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b  Ax is orthogonal to all columns of A.

Lucas numbers
Ln = 2,J, 3, 4, ... satisfy Ln = L n l +Ln 2 = A1 +A~, with AI, A2 = (1 ± /5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

Multiplier eij.
The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

Nilpotent matrix N.
Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

Orthogonal matrix Q.
Square matrix with orthonormal columns, so QT = Ql. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.
Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

Right inverse A+.
If A has full row rank m, then A+ = AT(AAT)l has AA+ = 1m.

Similar matrices A and B.
Every B = MI AM has the same eigenvalues as A.

Symmetric factorizations A = LDLT and A = QAQT.
Signs in A = signs in D.

Triangle inequality II u + v II < II u II + II v II.
For matrix norms II A + B II < II A II + II B II·

Vandermonde matrix V.
V c = b gives coefficients of p(x) = Co + ... + Cn_IXn 1 with P(Xi) = bi. Vij = (Xi)jI and det V = product of (Xk  Xi) for k > i.

Vector v in Rn.
Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.
I don't want to reset my password
Need help? Contact support
Having trouble accessing your account? Let us help you, contact support at +1(510) 9441054 or support@studysoup.com
Forgot password? Reset it here