 Chapter 1: Mathematical Induction
 Chapter 10: FROM CAESAR CIPHER TO PUBLIC KEY CRYPTOGRAPHY
 Chapter 11: PERFECT NUMBERS
 Chapter 12: THE EQUATION x2 + y2 = z2
 Chapter 13: SUMS OF TWO SQUARES
 Chapter 14: THE FIBONACCI SEQUENCE
 Chapter 15: FINITE CONTINUED FRACTIONS
 Chapter 16: PRIMALITY TESTING AND FACTORIZATION
 Chapter 2: EARLY NUMBER THEORY
 Chapter 3: THE FUNDAMENTAL THEOREM OF ARITHMETIC
 Chapter 4: BASIC PROPERTIES OF CONGRUENCE
 Chapter 5: FERMAT'S LITTLE THEOREM AND PSEUDOPRIMES
 Chapter 6: THE SUM AND NUMBER OF DIVISORS
 Chapter 7: EULER'S PHIFUNCTION
 Chapter 8: THE ORDER OF AN INTEGER MODULO n
 Chapter 9: EULER'S CRITERION
Elementary Number Theory 7th Edition  Solutions by Chapter
Full solutions for Elementary Number Theory  7th Edition
ISBN: 9780073383149
Elementary Number Theory  7th Edition  Solutions by Chapter
Get Full SolutionsThe full stepbystep solution to problem in Elementary Number Theory were answered by , our top Math solution expert on 03/14/18, 05:19PM. Elementary Number Theory was written by and is associated to the ISBN: 9780073383149. Since problems from 16 chapters in Elementary Number Theory have been answered, more than 2721 students have viewed full stepbystep answer. This textbook survival guide was created for the textbook: Elementary Number Theory, edition: 7. This expansive textbook survival guide covers the following chapters: 16.

Change of basis matrix M.
The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

Cofactor Cij.
Remove row i and column j; multiply the determinant by (I)i + j •

Cross product u xv in R3:
Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

Diagonalizable matrix A.
Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then SI AS = A = eigenvalue matrix.

GramSchmidt orthogonalization A = QR.
Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

Jordan form 1 = M 1 AM.
If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

Krylov subspace Kj(A, b).
The subspace spanned by b, Ab, ... , AjIb. Numerical methods approximate A I b by x j with residual b  Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

lAII = l/lAI and IATI = IAI.
The big formula for det(A) has a sum of n! terms, the cofactor formula uses determinants of size n  1, volume of box = I det( A) I.

Left inverse A+.
If A has full column rank n, then A+ = (AT A)I AT has A+ A = In.

Length II x II.
Square root of x T x (Pythagoras in n dimensions).

Linear combination cv + d w or L C jV j.
Vector addition and scalar multiplication.

Linear transformation T.
Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

Multiplication Ax
= Xl (column 1) + ... + xn(column n) = combination of columns.

Multiplicities AM and G M.
The algebraic multiplicity A M of A is the number of times A appears as a root of det(A  AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

Network.
A directed graph that has constants Cl, ... , Cm associated with the edges.

Norm
IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

Right inverse A+.
If A has full row rank m, then A+ = AT(AAT)l has AA+ = 1m.

Row picture of Ax = b.
Each equation gives a plane in Rn; the planes intersect at x.

Volume of box.
The rows (or the columns) of A generate a box with volume I det(A) I.

Wavelets Wjk(t).
Stretch and shift the time axis to create Wjk(t) = woo(2j t  k).