×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 4.2: Compound Inequalities

Full solutions for Intermediate Algebra for College Students | 6th Edition

ISBN: 9780321758934

Solutions for Chapter 4.2: Compound Inequalities

Solutions for Chapter 4.2
4 5 0 334 Reviews
31
1
Textbook: Intermediate Algebra for College Students
Edition: 6
Author: Robert F. Blitzer
ISBN: 9780321758934

This expansive textbook survival guide covers the following chapters and their solutions. Chapter 4.2: Compound Inequalities includes 107 full step-by-step solutions. Intermediate Algebra for College Students was written by and is associated to the ISBN: 9780321758934. Since 107 problems in chapter 4.2: Compound Inequalities have been answered, more than 74669 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Intermediate Algebra for College Students, edition: 6.

Key Math Terms and definitions covered in this textbook
  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Cyclic shift

    S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Symmetric matrix A.

    The transpose is AT = A, and aU = a ji. A-I is also symmetric.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.