×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 4.4: Linear Inequalities in Two Variables

Full solutions for Intermediate Algebra for College Students | 6th Edition

ISBN: 9780321758934

Solutions for Chapter 4.4: Linear Inequalities in Two Variables

Solutions for Chapter 4.4
4 5 0 271 Reviews
16
2
Textbook: Intermediate Algebra for College Students
Edition: 6
Author: Robert F. Blitzer
ISBN: 9780321758934

Chapter 4.4: Linear Inequalities in Two Variables includes 101 full step-by-step solutions. Since 101 problems in chapter 4.4: Linear Inequalities in Two Variables have been answered, more than 89853 students have viewed full step-by-step solutions from this chapter. Intermediate Algebra for College Students was written by and is associated to the ISBN: 9780321758934. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Intermediate Algebra for College Students, edition: 6.

Key Math Terms and definitions covered in this textbook
  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Condition number

    cond(A) = c(A) = IIAIlIIA-III = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Norm

    IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.