×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 7.5: Multiplying with More Than One Term and Rationalizing Denominators

Full solutions for Intermediate Algebra for College Students | 6th Edition

ISBN: 9780321758934

Solutions for Chapter 7.5: Multiplying with More Than One Term and Rationalizing Denominators

Solutions for Chapter 7.5
4 5 0 428 Reviews
19
0
Textbook: Intermediate Algebra for College Students
Edition: 6
Author: Robert F. Blitzer
ISBN: 9780321758934

Chapter 7.5: Multiplying with More Than One Term and Rationalizing Denominators includes 151 full step-by-step solutions. Intermediate Algebra for College Students was written by and is associated to the ISBN: 9780321758934. Since 151 problems in chapter 7.5: Multiplying with More Than One Term and Rationalizing Denominators have been answered, more than 52886 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Intermediate Algebra for College Students, edition: 6.

Key Math Terms and definitions covered in this textbook
  • Back substitution.

    Upper triangular systems are solved in reverse order Xn to Xl.

  • Basis for V.

    Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Norm

    IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password