×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Textbooks / Math / Linear Algebra with Applications 4

Linear Algebra with Applications 4th Edition - Solutions by Chapter

Full solutions for Linear Algebra with Applications | 4th Edition

ISBN: 9780136009269

Linear Algebra with Applications | 4th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 360 Reviews
Textbook: Linear Algebra with Applications
Edition: 4
Author: Otto Bretscher
ISBN: 9780136009269

The full step-by-step solution to problem in Linear Algebra with Applications were answered by , our top Math solution expert on 03/15/18, 05:20PM. Since problems from 41 chapters in Linear Algebra with Applications have been answered, more than 61954 students have viewed full step-by-step answer. This textbook survival guide was created for the textbook: Linear Algebra with Applications, edition: 4. This expansive textbook survival guide covers the following chapters: 41. Linear Algebra with Applications was written by and is associated to the ISBN: 9780136009269.

Key Math Terms and definitions covered in this textbook
  • Back substitution.

    Upper triangular systems are solved in reverse order Xn to Xl.

  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.