×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 2: Linear Transformations

Full solutions for Linear Algebra with Applications | 4th Edition

ISBN: 9780136009269

Solutions for Chapter 2: Linear Transformations

Solutions for Chapter 2
4 5 0 301 Reviews
26
0
Textbook: Linear Algebra with Applications
Edition: 4
Author: Otto Bretscher
ISBN: 9780136009269

Linear Algebra with Applications was written by and is associated to the ISBN: 9780136009269. This expansive textbook survival guide covers the following chapters and their solutions. Since 56 problems in chapter 2: Linear Transformations have been answered, more than 15448 students have viewed full step-by-step solutions from this chapter. Chapter 2: Linear Transformations includes 56 full step-by-step solutions. This textbook survival guide was created for the textbook: Linear Algebra with Applications, edition: 4.

Key Math Terms and definitions covered in this textbook
  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Cayley-Hamilton Theorem.

    peA) = det(A - AI) has peA) = zero matrix.

  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Column space C (A) =

    space of all combinations of the columns of A.

  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Semidefinite matrix A.

    (Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Vector addition.

    v + w = (VI + WI, ... , Vn + Wn ) = diagonal of parallelogram.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password