×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 4.3: Th e Matrix of a Linear Transformation

Full solutions for Linear Algebra with Applications | 4th Edition

ISBN: 9780136009269

Solutions for Chapter 4.3: Th e Matrix of a Linear Transformation

Solutions for Chapter 4.3
4 5 0 258 Reviews
14
0
Textbook: Linear Algebra with Applications
Edition: 4
Author: Otto Bretscher
ISBN: 9780136009269

Chapter 4.3: Th e Matrix of a Linear Transformation includes 72 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Linear Algebra with Applications, edition: 4. Linear Algebra with Applications was written by and is associated to the ISBN: 9780136009269. Since 72 problems in chapter 4.3: Th e Matrix of a Linear Transformation have been answered, more than 15447 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Inverse matrix A-I.

    Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Stiffness matrix

    If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

  • Volume of box.

    The rows (or the columns) of A generate a box with volume I det(A) I.

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password