Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 3.4: Eigenvalues and Eigenvectors

Full solutions for Linear Algebra with Applications | 8th Edition

ISBN: 9781449679545

Solutions for Chapter 3.4: Eigenvalues and Eigenvectors

Solutions for Chapter 3.4
4 5 0 381 Reviews
Textbook: Linear Algebra with Applications
Edition: 8
Author: Gareth Williams
ISBN: 9781449679545

This expansive textbook survival guide covers the following chapters and their solutions. Chapter 3.4: Eigenvalues and Eigenvectors includes 35 full step-by-step solutions. This textbook survival guide was created for the textbook: Linear Algebra with Applications, edition: 8. Linear Algebra with Applications was written by and is associated to the ISBN: 9781449679545. Since 35 problems in chapter 3.4: Eigenvalues and Eigenvectors have been answered, more than 8097 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Orthogonal matrix Q.

    Square matrix with orthonormal columns, so QT = Q-l. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Outer product uv T

    = column times row = rank one matrix.

  • Pivot.

    The diagonal entry (first nonzero) at the time when a row is used in elimination.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Right inverse A+.

    If A has full row rank m, then A+ = AT(AAT)-l has AA+ = 1m.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
Reset your password