×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 6.2: Non-Euclidean Geometry and Special Relativity

Full solutions for Linear Algebra with Applications | 8th Edition

ISBN: 9781449679545

Solutions for Chapter 6.2: Non-Euclidean Geometry and Special Relativity

Chapter 6.2: Non-Euclidean Geometry and Special Relativity includes 13 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Linear Algebra with Applications, edition: 8. Linear Algebra with Applications was written by and is associated to the ISBN: 9781449679545. Since 13 problems in chapter 6.2: Non-Euclidean Geometry and Special Relativity have been answered, more than 25276 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Basis for V.

    Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Inverse matrix A-I.

    Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Multiplier eij.

    The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Polar decomposition A = Q H.

    Orthogonal Q times positive (semi)definite H.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.