×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 7.6: The Singular Value Decomposition

Full solutions for Linear Algebra with Applications | 8th Edition

ISBN: 9781449679545

Solutions for Chapter 7.6: The Singular Value Decomposition

Solutions for Chapter 7.6
4 5 0 274 Reviews
24
3
Textbook: Linear Algebra with Applications
Edition: 8
Author: Gareth Williams
ISBN: 9781449679545

Chapter 7.6: The Singular Value Decomposition includes 45 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Since 45 problems in chapter 7.6: The Singular Value Decomposition have been answered, more than 8488 students have viewed full step-by-step solutions from this chapter. Linear Algebra with Applications was written by and is associated to the ISBN: 9781449679545. This textbook survival guide was created for the textbook: Linear Algebra with Applications, edition: 8.

Key Math Terms and definitions covered in this textbook
  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Cayley-Hamilton Theorem.

    peA) = det(A - AI) has peA) = zero matrix.

  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Condition number

    cond(A) = c(A) = IIAIlIIA-III = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib IIĀ· Condition numbers measure the sensitivity of the output to change in the input.

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Fundamental Theorem.

    The nullspace N (A) and row space C (AT) are orthogonal complements in Rn(perpendicular from Ax = 0 with dimensions rand n - r). Applied to AT, the column space C(A) is the orthogonal complement of N(AT) in Rm.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Outer product uv T

    = column times row = rank one matrix.

  • Permutation matrix P.

    There are n! orders of 1, ... , n. The n! P 's have the rows of I in those orders. P A puts the rows of A in the same order. P is even or odd (det P = 1 or -1) based on the number of row exchanges to reach I.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Stiffness matrix

    If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

  • Sum V + W of subs paces.

    Space of all (v in V) + (w in W). Direct sum: V n W = to}.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Unitary matrix UH = U T = U-I.

    Orthonormal columns (complex analog of Q).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password