×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 8.2: The Simplex Method

Full solutions for Linear Algebra with Applications | 8th Edition

ISBN: 9781449679545

Solutions for Chapter 8.2: The Simplex Method

Chapter 8.2: The Simplex Method includes 16 full step-by-step solutions. Linear Algebra with Applications was written by and is associated to the ISBN: 9781449679545. This textbook survival guide was created for the textbook: Linear Algebra with Applications, edition: 8. This expansive textbook survival guide covers the following chapters and their solutions. Since 16 problems in chapter 8.2: The Simplex Method have been answered, more than 8660 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password