×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 2.2: Properties of Determinants

Full solutions for Linear Algebra with Applications | 8th Edition

ISBN: 9780136009290

Solutions for Chapter 2.2: Properties of Determinants

Solutions for Chapter 2.2
4 5 0 272 Reviews
18
4
Textbook: Linear Algebra with Applications
Edition: 8
Author: Steve Leon
ISBN: 9780136009290

This expansive textbook survival guide covers the following chapters and their solutions. Since 21 problems in chapter 2.2: Properties of Determinants have been answered, more than 5058 students have viewed full step-by-step solutions from this chapter. Linear Algebra with Applications was written by and is associated to the ISBN: 9780136009290. Chapter 2.2: Properties of Determinants includes 21 full step-by-step solutions. This textbook survival guide was created for the textbook: Linear Algebra with Applications, edition: 8.

Key Math Terms and definitions covered in this textbook
  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Eigenvalue A and eigenvector x.

    Ax = AX with x#-O so det(A - AI) = o.

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • lA-II = l/lAI and IATI = IAI.

    The big formula for det(A) has a sum of n! terms, the cofactor formula uses determinants of size n - 1, volume of box = I det( A) I.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Spectrum of A = the set of eigenvalues {A I, ... , An}.

    Spectral radius = max of IAi I.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password