Solutions for Chapter 9.1: EULER METHODS AND ERROR ANALYSIS

A First Course in Differential Equations with Modeling Applications | 10th Edition | ISBN: 9781111827052 | Authors: Dennis G. Zill

Full solutions for A First Course in Differential Equations with Modeling Applications | 10th Edition

ISBN: 9781111827052

A First Course in Differential Equations with Modeling Applications | 10th Edition | ISBN: 9781111827052 | Authors: Dennis G. Zill

Solutions for Chapter 9.1: EULER METHODS AND ERROR ANALYSIS

Solutions for Chapter 9.1
4 5 0 276 Reviews
28
1
Textbook: A First Course in Differential Equations with Modeling Applications
Edition: 10th
Author: Dennis G. Zill
ISBN: 9781111827052

This expansive textbook survival guide covers the following chapters and their solutions. A First Course in Differential Equations with Modeling Applications was written by Sieva Kozinsky and is associated to the ISBN: 9781111827052. Since 21 problems in chapter 9.1: EULER METHODS AND ERROR ANALYSIS have been answered, more than 20405 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: A First Course in Differential Equations with Modeling Applications, edition: 10th. Chapter 9.1: EULER METHODS AND ERROR ANALYSIS includes 21 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Fast Fourier Transform (FFT).

    A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn-1c can be computed with ne/2 multiplications. Revolutionary.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • Krylov subspace Kj(A, b).

    The subspace spanned by b, Ab, ... , Aj-Ib. Numerical methods approximate A -I b by x j with residual b - Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Linearly dependent VI, ... , Vn.

    A combination other than all Ci = 0 gives L Ci Vi = O.

  • Lucas numbers

    Ln = 2,J, 3, 4, ... satisfy Ln = L n- l +Ln- 2 = A1 +A~, with AI, A2 = (1 ± -/5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b - Ax) = o.

  • Outer product uv T

    = column times row = rank one matrix.

  • Pascal matrix

    Ps = pascal(n) = the symmetric matrix with binomial entries (i1~;2). Ps = PL Pu all contain Pascal's triangle with det = 1 (see Pascal in the index).

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

×
Log in to StudySoup
Get Full Access to Thousands of Study Materials at Your School

Forgot password? Reset password here

Join StudySoup for FREE
Get Full Access to Thousands of Study Materials at Your School
Join with Email
Already have an account? Login here
Reset your password

I don't want to reset my password

Need help? Contact support

Need an Account? Is not associated with an account
Sign up
We're here to help

Having trouble accessing your account? Let us help you, contact support at +1(510) 944-1054 or support@studysoup.com

Got it, thanks!
Password Reset Request Sent An email has been sent to the email address associated to your account. Follow the link in the email to reset your password. If you're having trouble finding our email please check your spam folder
Got it, thanks!
Already have an Account? Is already in use
Log in
Incorrect Password The password used to log in with this account is incorrect
Try Again

Forgot password? Reset it here