×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
Textbooks / Math / Modern Algebra: An Introduction 6

Modern Algebra: An Introduction 6th Edition - Solutions by Chapter

Modern Algebra: An Introduction | 6th Edition | ISBN: 9780470384435 | Authors: John R. Durbin

Full solutions for Modern Algebra: An Introduction | 6th Edition

ISBN: 9780470384435

Modern Algebra: An Introduction | 6th Edition | ISBN: 9780470384435 | Authors: John R. Durbin

Modern Algebra: An Introduction | 6th Edition - Solutions by Chapter

Solutions by Chapter
4 5 0 372 Reviews
Textbook: Modern Algebra: An Introduction
Edition: 6
Author: John R. Durbin
ISBN: 9780470384435

The full step-by-step solution to problem in Modern Algebra: An Introduction were answered by , our top Math solution expert on 03/16/18, 02:52PM. This expansive textbook survival guide covers the following chapters: 66. Modern Algebra: An Introduction was written by and is associated to the ISBN: 9780470384435. This textbook survival guide was created for the textbook: Modern Algebra: An Introduction, edition: 6. Since problems from 66 chapters in Modern Algebra: An Introduction have been answered, more than 7263 students have viewed full step-by-step answer.

Key Math Terms and definitions covered in this textbook
  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Cyclic shift

    S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Inverse matrix A-I.

    Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Linear transformation T.

    Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Nilpotent matrix N.

    Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Sum V + W of subs paces.

    Space of all (v in V) + (w in W). Direct sum: V n W = to}.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password