×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 13: FACTORIZATION. EULER'S PHI-FUNCTION

Modern Algebra: An Introduction | 6th Edition | ISBN: 9780470384435 | Authors: John R. Durbin

Full solutions for Modern Algebra: An Introduction | 6th Edition

ISBN: 9780470384435

Modern Algebra: An Introduction | 6th Edition | ISBN: 9780470384435 | Authors: John R. Durbin

Solutions for Chapter 13: FACTORIZATION. EULER'S PHI-FUNCTION

Solutions for Chapter 13
4 5 0 254 Reviews
27
4
Textbook: Modern Algebra: An Introduction
Edition: 6
Author: John R. Durbin
ISBN: 9780470384435

This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Modern Algebra: An Introduction, edition: 6. Modern Algebra: An Introduction was written by and is associated to the ISBN: 9780470384435. Chapter 13: FACTORIZATION. EULER'S PHI-FUNCTION includes 23 full step-by-step solutions. Since 23 problems in chapter 13: FACTORIZATION. EULER'S PHI-FUNCTION have been answered, more than 8832 students have viewed full step-by-step solutions from this chapter.

Key Math Terms and definitions covered in this textbook
  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Cross product u xv in R3:

    Vector perpendicular to u and v, length Ilullllvlll sin el = area of parallelogram, u x v = "determinant" of [i j k; UI U2 U3; VI V2 V3].

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Fast Fourier Transform (FFT).

    A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn-1c can be computed with ne/2 multiplications. Revolutionary.

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Linear combination cv + d w or L C jV j.

    Vector addition and scalar multiplication.

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Pivot columns of A.

    Columns that contain pivots after row reduction. These are not combinations of earlier columns. The pivot columns are a basis for the column space.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Rayleigh quotient q (x) = X T Ax I x T x for symmetric A: Amin < q (x) < Amax.

    Those extremes are reached at the eigenvectors x for Amin(A) and Amax(A).

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password