 45.45.1: Find the minimum polynomial of cover F in each case(a) F = Q, c = h...
 45.45.2: Prove Theorem 45.6. [Prove that if (Vi ... V,,) is a basis for Kove...
 45.45.3: Prove that if [M : KJ is a prime and K <; L <; M. then L = K or L = M.
 45.45.4: Without using Example 45.1. explain why.j6 E Q( h. J3). Prove that....
 45.45.5: Prove that if [E : FJ is a prime. then E is a simple extension of F...
 45.45.6: Prove that if A is the field of all algebraic numbers (Section 32),...
 45.45.7: By Theorem 45.1 if a and f3 have the same minimum polynomial over F...
Solutions for Chapter 45: ALGEBRAIC EXTENSIONS
Full solutions for Modern Algebra: An Introduction  6th Edition
ISBN: 9780470384435
Solutions for Chapter 45: ALGEBRAIC EXTENSIONS
Get Full SolutionsModern Algebra: An Introduction was written by and is associated to the ISBN: 9780470384435. Chapter 45: ALGEBRAIC EXTENSIONS includes 7 full stepbystep solutions. This textbook survival guide was created for the textbook: Modern Algebra: An Introduction, edition: 6. Since 7 problems in chapter 45: ALGEBRAIC EXTENSIONS have been answered, more than 8151 students have viewed full stepbystep solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions.

Conjugate Gradient Method.
A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax  x Tb over growing Krylov subspaces.

Covariance matrix:E.
When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x  x) (x  x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

Diagonal matrix D.
dij = 0 if i # j. Blockdiagonal: zero outside square blocks Du.

Full column rank r = n.
Independent columns, N(A) = {O}, no free variables.

GramSchmidt orthogonalization A = QR.
Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

Kirchhoff's Laws.
Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

lAII = l/lAI and IATI = IAI.
The big formula for det(A) has a sum of n! terms, the cofactor formula uses determinants of size n  1, volume of box = I det( A) I.

Lucas numbers
Ln = 2,J, 3, 4, ... satisfy Ln = L n l +Ln 2 = A1 +A~, with AI, A2 = (1 ± /5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

Multiplicities AM and G M.
The algebraic multiplicity A M of A is the number of times A appears as a root of det(A  AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

Nilpotent matrix N.
Some power of N is the zero matrix, N k = o. The only eigenvalue is A = 0 (repeated n times). Examples: triangular matrices with zero diagonal.

Orthonormal vectors q 1 , ... , q n·
Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q 1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

Partial pivoting.
In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

Pivot.
The diagonal entry (first nonzero) at the time when a row is used in elimination.

Random matrix rand(n) or randn(n).
MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

Row space C (AT) = all combinations of rows of A.
Column vectors by convention.

Similar matrices A and B.
Every B = MI AM has the same eigenvalues as A.

Singular Value Decomposition
(SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

Subspace S of V.
Any vector space inside V, including V and Z = {zero vector only}.

Tridiagonal matrix T: tij = 0 if Ii  j I > 1.
T 1 has rank 1 above and below diagonal.

Unitary matrix UH = U T = UI.
Orthonormal columns (complex analog of Q).