×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 9.2: Orthogonal Matrices and Similarity Transformations

Numerical Analysis | 10th Edition | ISBN: 9781305253667 | Authors: Richard L. Burden J. Douglas Faires, Annette M. Burden

Full solutions for Numerical Analysis | 10th Edition

ISBN: 9781305253667

Numerical Analysis | 10th Edition | ISBN: 9781305253667 | Authors: Richard L. Burden J. Douglas Faires, Annette M. Burden

Solutions for Chapter 9.2: Orthogonal Matrices and Similarity Transformations

Solutions for Chapter 9.2
4 5 0 359 Reviews
18
1
Textbook: Numerical Analysis
Edition: 10
Author: Richard L. Burden J. Douglas Faires, Annette M. Burden
ISBN: 9781305253667

This expansive textbook survival guide covers the following chapters and their solutions. Since 20 problems in chapter 9.2: Orthogonal Matrices and Similarity Transformations have been answered, more than 15068 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Numerical Analysis, edition: 10. Numerical Analysis was written by and is associated to the ISBN: 9781305253667. Chapter 9.2: Orthogonal Matrices and Similarity Transformations includes 20 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Cyclic shift

    S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Lucas numbers

    Ln = 2,J, 3, 4, ... satisfy Ln = L n- l +Ln- 2 = A1 +A~, with AI, A2 = (1 ± -/5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

  • Matrix multiplication AB.

    The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Multiplier eij.

    The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

  • Orthogonal subspaces.

    Every v in V is orthogonal to every w in W.

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Reduced row echelon form R = rref(A).

    Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Symmetric matrix A.

    The transpose is AT = A, and aU = a ji. A-I is also symmetric.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password