 9.4.1: Use Householder's method to place the following matrices in tridiag...
 9.4.2: Use Householder's method to place the following matrices in tridiag...
 9.4.3: Modify Householder's Algorithm 9.5 to compute similar upperHessenb...
 9.4.4: The following homogeneous system of linear firstorder differential...
Solutions for Chapter 9.4: Householder's Method
Full solutions for Numerical Analysis  10th Edition
ISBN: 9781305253667
Solutions for Chapter 9.4: Householder's Method
Get Full SolutionsThis expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Numerical Analysis, edition: 10. Since 4 problems in chapter 9.4: Householder's Method have been answered, more than 13011 students have viewed full stepbystep solutions from this chapter. Numerical Analysis was written by and is associated to the ISBN: 9781305253667. Chapter 9.4: Householder's Method includes 4 full stepbystep solutions.

Adjacency matrix of a graph.
Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

Characteristic equation det(A  AI) = O.
The n roots are the eigenvalues of A.

Complete solution x = x p + Xn to Ax = b.
(Particular x p) + (x n in nullspace).

Cramer's Rule for Ax = b.
B j has b replacing column j of A; x j = det B j I det A

Elimination.
A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

Factorization
A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

Free columns of A.
Columns without pivots; these are combinations of earlier columns.

Full column rank r = n.
Independent columns, N(A) = {O}, no free variables.

Indefinite matrix.
A symmetric matrix with eigenvalues of both signs (+ and  ).

Krylov subspace Kj(A, b).
The subspace spanned by b, Ab, ... , AjIb. Numerical methods approximate A I b by x j with residual b  Ax j in this subspace. A good basis for K j requires only multiplication by A at each step.

Lucas numbers
Ln = 2,J, 3, 4, ... satisfy Ln = L n l +Ln 2 = A1 +A~, with AI, A2 = (1 ± /5)/2 from the Fibonacci matrix U~]' Compare Lo = 2 with Fo = O.

Network.
A directed graph that has constants Cl, ... , Cm associated with the edges.

Normal matrix.
If N NT = NT N, then N has orthonormal (complex) eigenvectors.

Orthogonal matrix Q.
Square matrix with orthonormal columns, so QT = Ql. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

Positive definite matrix A.
Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

Pseudoinverse A+ (MoorePenrose inverse).
The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

Row space C (AT) = all combinations of rows of A.
Column vectors by convention.

Similar matrices A and B.
Every B = MI AM has the same eigenvalues as A.

Spectrum of A = the set of eigenvalues {A I, ... , An}.
Spectral radius = max of IAi I.

Transpose matrix AT.
Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and AI are BT AT and (AT)I.