×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 2.2: Fixed-Point Iteration

Numerical Analysis | 9th Edition | ISBN: 9780538733519 | Authors: Richard L. Burden, J. Douglas Faires

Full solutions for Numerical Analysis | 9th Edition

ISBN: 9780538733519

Numerical Analysis | 9th Edition | ISBN: 9780538733519 | Authors: Richard L. Burden, J. Douglas Faires

Solutions for Chapter 2.2: Fixed-Point Iteration

Solutions for Chapter 2.2
4 5 0 405 Reviews
10
1
Textbook: Numerical Analysis
Edition: 9
Author: Richard L. Burden, J. Douglas Faires
ISBN: 9780538733519

This textbook survival guide was created for the textbook: Numerical Analysis, edition: 9. Numerical Analysis was written by and is associated to the ISBN: 9780538733519. Since 24 problems in chapter 2.2: Fixed-Point Iteration have been answered, more than 15792 students have viewed full step-by-step solutions from this chapter. Chapter 2.2: Fixed-Point Iteration includes 24 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions.

Key Math Terms and definitions covered in this textbook
  • Cayley-Hamilton Theorem.

    peA) = det(A - AI) has peA) = zero matrix.

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Conjugate Gradient Method.

    A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax - x Tb over growing Krylov subspaces.

  • Cyclic shift

    S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • lA-II = l/lAI and IATI = IAI.

    The big formula for det(A) has a sum of n! terms, the cofactor formula uses determinants of size n - 1, volume of box = I det( A) I.

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Spectrum of A = the set of eigenvalues {A I, ... , An}.

    Spectral radius = max of IAi I.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Stiffness matrix

    If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password