×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 2.3: Newton's Method and Its Extensions

Numerical Analysis | 9th Edition | ISBN: 9780538733519 | Authors: Richard L. Burden, J. Douglas Faires

Full solutions for Numerical Analysis | 9th Edition

ISBN: 9780538733519

Numerical Analysis | 9th Edition | ISBN: 9780538733519 | Authors: Richard L. Burden, J. Douglas Faires

Solutions for Chapter 2.3: Newton's Method and Its Extensions

Solutions for Chapter 2.3
4 5 0 280 Reviews
15
3
Textbook: Numerical Analysis
Edition: 9
Author: Richard L. Burden, J. Douglas Faires
ISBN: 9780538733519

Numerical Analysis was written by and is associated to the ISBN: 9780538733519. Since 34 problems in chapter 2.3: Newton's Method and Its Extensions have been answered, more than 16035 students have viewed full step-by-step solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: Numerical Analysis, edition: 9. Chapter 2.3: Newton's Method and Its Extensions includes 34 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Condition number

    cond(A) = c(A) = IIAIlIIA-III = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Normal equation AT Ax = ATb.

    Gives the least squares solution to Ax = b if A has full rank n (independent columns). The equation says that (columns of A)·(b - Ax) = o.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Orthogonal matrix Q.

    Square matrix with orthonormal columns, so QT = Q-l. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Reduced row echelon form R = rref(A).

    Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password