×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 105: Using Proportions to Solve Percent Problems

Saxon Math, Course 1 | 1st Edition | ISBN: 9781591417835 | Authors: Stephan Hake

Full solutions for Saxon Math, Course 1 | 1st Edition

ISBN: 9781591417835

Saxon Math, Course 1 | 1st Edition | ISBN: 9781591417835 | Authors: Stephan Hake

Solutions for Chapter 105: Using Proportions to Solve Percent Problems

Solutions for Chapter 105
4 5 0 357 Reviews
22
1
Textbook: Saxon Math, Course 1
Edition: 1
Author: Stephan Hake
ISBN: 9781591417835

Saxon Math, Course 1 was written by and is associated to the ISBN: 9781591417835. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 105: Using Proportions to Solve Percent Problems includes 30 full step-by-step solutions. Since 30 problems in chapter 105: Using Proportions to Solve Percent Problems have been answered, more than 35733 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Saxon Math, Course 1, edition: 1.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Cholesky factorization

    A = CTC = (L.J]))(L.J]))T for positive definite A.

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Commuting matrices AB = BA.

    If diagonalizable, they share n eigenvectors.

  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Matrix multiplication AB.

    The i, j entry of AB is (row i of A)·(column j of B) = L aikbkj. By columns: Column j of AB = A times column j of B. By rows: row i of A multiplies B. Columns times rows: AB = sum of (column k)(row k). All these equivalent definitions come from the rule that A B times x equals A times B x .

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Outer product uv T

    = column times row = rank one matrix.

  • Permutation matrix P.

    There are n! orders of 1, ... , n. The n! P 's have the rows of I in those orders. P A puts the rows of A in the same order. P is even or odd (det P = 1 or -1) based on the number of row exchanges to reach I.

  • Polar decomposition A = Q H.

    Orthogonal Q times positive (semi)definite H.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password