×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 11.4: Exponential and Logarithmic Functions: Graphs and Orders

Discrete Mathematics with Applications | 4th Edition | ISBN: 9780495391326 | Authors: Susanna S. Epp

Full solutions for Discrete Mathematics with Applications | 4th Edition

ISBN: 9780495391326

Discrete Mathematics with Applications | 4th Edition | ISBN: 9780495391326 | Authors: Susanna S. Epp

Solutions for Chapter 11.4: Exponential and Logarithmic Functions: Graphs and Orders

Solutions for Chapter 11.4
4 5 0 301 Reviews
11
4
Textbook: Discrete Mathematics with Applications
Edition: 4
Author: Susanna S. Epp
ISBN: 9780495391326

This textbook survival guide was created for the textbook: Discrete Mathematics with Applications , edition: 4. This expansive textbook survival guide covers the following chapters and their solutions. Since 56 problems in chapter 11.4: Exponential and Logarithmic Functions: Graphs and Orders have been answered, more than 45197 students have viewed full step-by-step solutions from this chapter. Chapter 11.4: Exponential and Logarithmic Functions: Graphs and Orders includes 56 full step-by-step solutions. Discrete Mathematics with Applications was written by and is associated to the ISBN: 9780495391326.

Key Math Terms and definitions covered in this textbook
  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Cayley-Hamilton Theorem.

    peA) = det(A - AI) has peA) = zero matrix.

  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Condition number

    cond(A) = c(A) = IIAIlIIA-III = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

  • Factorization

    A = L U. If elimination takes A to U without row exchanges, then the lower triangular L with multipliers eij (and eii = 1) brings U back to A.

  • Fast Fourier Transform (FFT).

    A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn-1c can be computed with ne/2 multiplications. Revolutionary.

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Hessenberg matrix H.

    Triangular matrix with one extra nonzero adjacent diagonal.

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Linearly dependent VI, ... , Vn.

    A combination other than all Ci = 0 gives L Ci Vi = O.

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Orthogonal matrix Q.

    Square matrix with orthonormal columns, so QT = Q-l. Preserves length and angles, IIQxll = IIxll and (QX)T(Qy) = xTy. AlllAI = 1, with orthogonal eigenvectors. Examples: Rotation, reflection, permutation.

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Spectral Theorem A = QAQT.

    Real symmetric A has real A'S and orthonormal q's.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password