×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 4.3: Quadratic Functions and Their Properties

Full solutions for College Algebra | 9th Edition

ISBN: 9780321716811

Solutions for Chapter 4.3: Quadratic Functions and Their Properties

Solutions for Chapter 4.3
4 5 0 305 Reviews
18
3
Textbook: College Algebra
Edition: 9
Author: Michael Sullivan
ISBN: 9780321716811

Since 92 problems in chapter 4.3: Quadratic Functions and Their Properties have been answered, more than 36710 students have viewed full step-by-step solutions from this chapter. Chapter 4.3: Quadratic Functions and Their Properties includes 92 full step-by-step solutions. College Algebra was written by and is associated to the ISBN: 9780321716811. This textbook survival guide was created for the textbook: College Algebra, edition: 9. This expansive textbook survival guide covers the following chapters and their solutions.

Key Math Terms and definitions covered in this textbook
  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Elimination.

    A sequence of row operations that reduces A to an upper triangular U or to the reduced form R = rref(A). Then A = LU with multipliers eO in L, or P A = L U with row exchanges in P, or E A = R with an invertible E.

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Incidence matrix of a directed graph.

    The m by n edge-node incidence matrix has a row for each edge (node i to node j), with entries -1 and 1 in columns i and j .

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • lA-II = l/lAI and IATI = IAI.

    The big formula for det(A) has a sum of n! terms, the cofactor formula uses determinants of size n - 1, volume of box = I det( A) I.

  • Left inverse A+.

    If A has full column rank n, then A+ = (AT A)-I AT has A+ A = In.

  • Markov matrix M.

    All mij > 0 and each column sum is 1. Largest eigenvalue A = 1. If mij > 0, the columns of Mk approach the steady state eigenvector M s = s > O.

  • Polar decomposition A = Q H.

    Orthogonal Q times positive (semi)definite H.

  • Right inverse A+.

    If A has full row rank m, then A+ = AT(AAT)-l has AA+ = 1m.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Spectrum of A = the set of eigenvalues {A I, ... , An}.

    Spectral radius = max of IAi I.

  • Stiffness matrix

    If x gives the movements of the nodes, K x gives the internal forces. K = ATe A where C has spring constants from Hooke's Law and Ax = stretching.

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Symmetric matrix A.

    The transpose is AT = A, and aU = a ji. A-I is also symmetric.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password