×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 6.8: Exponential Growth and Decay Models; Newtons Law; Logistic Growth and Decay Models

Full solutions for College Algebra | 9th Edition

ISBN: 9780321716811

Solutions for Chapter 6.8: Exponential Growth and Decay Models; Newtons Law; Logistic Growth and Decay Models

Solutions for Chapter 6.8
4 5 0 300 Reviews
25
0
Textbook: College Algebra
Edition: 9
Author: Michael Sullivan
ISBN: 9780321716811

This expansive textbook survival guide covers the following chapters and their solutions. This textbook survival guide was created for the textbook: College Algebra, edition: 9. Since 25 problems in chapter 6.8: Exponential Growth and Decay Models; Newtons Law; Logistic Growth and Decay Models have been answered, more than 22995 students have viewed full step-by-step solutions from this chapter. College Algebra was written by and is associated to the ISBN: 9780321716811. Chapter 6.8: Exponential Growth and Decay Models; Newtons Law; Logistic Growth and Decay Models includes 25 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Complete solution x = x p + Xn to Ax = b.

    (Particular x p) + (x n in nullspace).

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Fourier matrix F.

    Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Inverse matrix A-I.

    Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Multiplicities AM and G M.

    The algebraic multiplicity A M of A is the number of times A appears as a root of det(A - AI) = O. The geometric multiplicity GM is the number of independent eigenvectors for A (= dimension of the eigenspace).

  • Normal matrix.

    If N NT = NT N, then N has orthonormal (complex) eigenvectors.

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Positive definite matrix A.

    Symmetric matrix with positive eigenvalues and positive pivots. Definition: x T Ax > 0 unless x = O. Then A = LDLT with diag(D» O.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Schwarz inequality

    Iv·wl < IIvll IIwll.Then IvTAwl2 < (vT Av)(wT Aw) for pos def A.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password