×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 10.2: Permutations and Combinations

Full solutions for College Algebra | 9th Edition

ISBN: 9780321716811

Solutions for Chapter 10.2: Permutations and Combinations

Solutions for Chapter 10.2
4 5 0 355 Reviews
27
0
Textbook: College Algebra
Edition: 9
Author: Michael Sullivan
ISBN: 9780321716811

College Algebra was written by and is associated to the ISBN: 9780321716811. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 10.2: Permutations and Combinations includes 66 full step-by-step solutions. Since 66 problems in chapter 10.2: Permutations and Combinations have been answered, more than 36596 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: College Algebra, edition: 9.

Key Math Terms and definitions covered in this textbook
  • Characteristic equation det(A - AI) = O.

    The n roots are the eigenvalues of A.

  • Cofactor Cij.

    Remove row i and column j; multiply the determinant by (-I)i + j •

  • Complex conjugate

    z = a - ib for any complex number z = a + ib. Then zz = Iz12.

  • Conjugate Gradient Method.

    A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax - x Tb over growing Krylov subspaces.

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Diagonalizable matrix A.

    Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then S-I AS = A = eigenvalue matrix.

  • Diagonalization

    A = S-1 AS. A = eigenvalue matrix and S = eigenvector matrix of A. A must have n independent eigenvectors to make S invertible. All Ak = SA k S-I.

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Kirchhoff's Laws.

    Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Nullspace N (A)

    = All solutions to Ax = O. Dimension n - r = (# columns) - rank.

  • Partial pivoting.

    In each column, choose the largest available pivot to control roundoff; all multipliers have leij I < 1. See condition number.

  • Projection p = a(aTblaTa) onto the line through a.

    P = aaT laTa has rank l.

  • Rank r (A)

    = number of pivots = dimension of column space = dimension of row space.

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Simplex method for linear programming.

    The minimum cost vector x * is found by moving from comer to lower cost comer along the edges of the feasible set (where the constraints Ax = b and x > 0 are satisfied). Minimum cost at a comer!

  • Singular Value Decomposition

    (SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password