×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 3.4: Linear and Angular Speed

Full solutions for Trigonometry | 11th Edition

ISBN: 9780134217437

Solutions for Chapter 3.4: Linear and Angular Speed

Solutions for Chapter 3.4
4 5 0 377 Reviews
10
3
Textbook: Trigonometry
Edition: 11
Author: Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
ISBN: 9780134217437

Trigonometry was written by and is associated to the ISBN: 9780134217437. Chapter 3.4: Linear and Angular Speed includes 52 full step-by-step solutions. This expansive textbook survival guide covers the following chapters and their solutions. Since 52 problems in chapter 3.4: Linear and Angular Speed have been answered, more than 25944 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Trigonometry, edition: 11.

Key Math Terms and definitions covered in this textbook
  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Conjugate Gradient Method.

    A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax - x Tb over growing Krylov subspaces.

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Free variable Xi.

    Column i has no pivot in elimination. We can give the n - r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

  • Gram-Schmidt orthogonalization A = QR.

    Independent columns in A, orthonormal columns in Q. Each column q j of Q is a combination of the first j columns of A (and conversely, so R is upper triangular). Convention: diag(R) > o.

  • Hermitian matrix A H = AT = A.

    Complex analog a j i = aU of a symmetric matrix.

  • Hilbert matrix hilb(n).

    Entries HU = 1/(i + j -1) = Jd X i- 1 xj-1dx. Positive definite but extremely small Amin and large condition number: H is ill-conditioned.

  • Independent vectors VI, .. " vk.

    No combination cl VI + ... + qVk = zero vector unless all ci = O. If the v's are the columns of A, the only solution to Ax = 0 is x = o.

  • Outer product uv T

    = column times row = rank one matrix.

  • Plane (or hyperplane) in Rn.

    Vectors x with aT x = O. Plane is perpendicular to a =1= O.

  • Projection matrix P onto subspace S.

    Projection p = P b is the closest point to b in S, error e = b - Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) -1 AT.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Reflection matrix (Householder) Q = I -2uuT.

    Unit vector u is reflected to Qu = -u. All x intheplanemirroruTx = o have Qx = x. Notice QT = Q-1 = Q.

  • Semidefinite matrix A.

    (Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B IIĀ·

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password