×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 2.8: Linear Algebra and Its Applications 5th Edition

Linear Algebra and Its Applications | 5th Edition | ISBN: 9780321982384 | Authors: David C. Lay; Steven R. Lay; Judi J. McDonald

Full solutions for Linear Algebra and Its Applications | 5th Edition

ISBN: 9780321982384

Linear Algebra and Its Applications | 5th Edition | ISBN: 9780321982384 | Authors: David C. Lay; Steven R. Lay; Judi J. McDonald

Solutions for Chapter 2.8

Solutions for Chapter 2.8
4 5 0 263 Reviews
16
3
Textbook: Linear Algebra and Its Applications
Edition: 5
Author: David C. Lay; Steven R. Lay; Judi J. McDonald
ISBN: 9780321982384

This expansive textbook survival guide covers the following chapters and their solutions. Chapter 2.8 includes 38 full step-by-step solutions. Since 38 problems in chapter 2.8 have been answered, more than 43832 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Linear Algebra and Its Applications , edition: 5. Linear Algebra and Its Applications was written by and is associated to the ISBN: 9780321982384.

Key Math Terms and definitions covered in this textbook
  • Adjacency matrix of a graph.

    Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected). Adjacency matrix of a graph. Square matrix with aij = 1 when there is an edge from node i to node j; otherwise aij = O. A = AT when edges go both ways (undirected).

  • Big formula for n by n determinants.

    Det(A) is a sum of n! terms. For each term: Multiply one entry from each row and column of A: rows in order 1, ... , nand column order given by a permutation P. Each of the n! P 's has a + or - sign.

  • Circulant matrix C.

    Constant diagonals wrap around as in cyclic shift S. Every circulant is Col + CIS + ... + Cn_lSn - l . Cx = convolution c * x. Eigenvectors in F.

  • Dimension of vector space

    dim(V) = number of vectors in any basis for V.

  • Identity matrix I (or In).

    Diagonal entries = 1, off-diagonal entries = 0.

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Orthonormal vectors q 1 , ... , q n·

    Dot products are q T q j = 0 if i =1= j and q T q i = 1. The matrix Q with these orthonormal columns has Q T Q = I. If m = n then Q T = Q -1 and q 1 ' ... , q n is an orthonormal basis for Rn : every v = L (v T q j )q j •

  • Particular solution x p.

    Any solution to Ax = b; often x p has free variables = o.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Right inverse A+.

    If A has full row rank m, then A+ = AT(AAT)-l has AA+ = 1m.

  • Schur complement S, D - C A -} B.

    Appears in block elimination on [~ g ].

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Skew-symmetric matrix K.

    The transpose is -K, since Kij = -Kji. Eigenvalues are pure imaginary, eigenvectors are orthogonal, eKt is an orthogonal matrix.

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Transpose matrix AT.

    Entries AL = Ajj. AT is n by In, AT A is square, symmetric, positive semidefinite. The transposes of AB and A-I are BT AT and (AT)-I.

  • Triangle inequality II u + v II < II u II + II v II.

    For matrix norms II A + B II < II A II + II B II·

  • Wavelets Wjk(t).

    Stretch and shift the time axis to create Wjk(t) = woo(2j t - k).

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password