×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 2.SE: Linear Algebra and Its Applications 5th Edition

Linear Algebra and Its Applications | 5th Edition | ISBN: 9780321982384 | Authors: David C. Lay; Steven R. Lay; Judi J. McDonald

Full solutions for Linear Algebra and Its Applications | 5th Edition

ISBN: 9780321982384

Linear Algebra and Its Applications | 5th Edition | ISBN: 9780321982384 | Authors: David C. Lay; Steven R. Lay; Judi J. McDonald

Solutions for Chapter 2.SE

Solutions for Chapter 2.SE
4 5 0 399 Reviews
15
4
Textbook: Linear Algebra and Its Applications
Edition: 5
Author: David C. Lay; Steven R. Lay; Judi J. McDonald
ISBN: 9780321982384

This expansive textbook survival guide covers the following chapters and their solutions. Chapter 2.SE includes 20 full step-by-step solutions. This textbook survival guide was created for the textbook: Linear Algebra and Its Applications , edition: 5. Since 20 problems in chapter 2.SE have been answered, more than 43641 students have viewed full step-by-step solutions from this chapter. Linear Algebra and Its Applications was written by and is associated to the ISBN: 9780321982384.

Key Math Terms and definitions covered in this textbook
  • Affine transformation

    Tv = Av + Vo = linear transformation plus shift.

  • Augmented matrix [A b].

    Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

  • Block matrix.

    A matrix can be partitioned into matrix blocks, by cuts between rows and/or between columns. Block multiplication ofAB is allowed if the block shapes permit.

  • Change of basis matrix M.

    The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Elimination matrix = Elementary matrix Eij.

    The identity matrix with an extra -eij in the i, j entry (i #- j). Then Eij A subtracts eij times row j of A from row i.

  • Ellipse (or ellipsoid) x T Ax = 1.

    A must be positive definite; the axes of the ellipse are eigenvectors of A, with lengths 1/.JI. (For IIx II = 1 the vectors y = Ax lie on the ellipse IIA-1 yll2 = Y T(AAT)-1 Y = 1 displayed by eigshow; axis lengths ad

  • Exponential eAt = I + At + (At)2 12! + ...

    has derivative AeAt; eAt u(O) solves u' = Au.

  • Full column rank r = n.

    Independent columns, N(A) = {O}, no free variables.

  • Indefinite matrix.

    A symmetric matrix with eigenvalues of both signs (+ and - ).

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Rank one matrix A = uvT f=. O.

    Column and row spaces = lines cu and cv.

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Saddle point of I(x}, ... ,xn ).

    A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Toeplitz matrix.

    Constant down each diagonal = time-invariant (shift-invariant) filter.

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

  • Vandermonde matrix V.

    V c = b gives coefficients of p(x) = Co + ... + Cn_IXn- 1 with P(Xi) = bi. Vij = (Xi)j-I and det V = product of (Xk - Xi) for k > i.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password