×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 0: Preliminaries

Contemporary Abstract Algebra | 8th Edition | ISBN: 9781133599708 | Authors: Joseph Gallian

Full solutions for Contemporary Abstract Algebra | 8th Edition

ISBN: 9781133599708

Contemporary Abstract Algebra | 8th Edition | ISBN: 9781133599708 | Authors: Joseph Gallian

Solutions for Chapter 0: Preliminaries

Solutions for Chapter 0
4 5 0 398 Reviews
22
2
Textbook: Contemporary Abstract Algebra
Edition: 8
Author: Joseph Gallian
ISBN: 9781133599708

Summary of Chapter 0: Preliminaries

Much of abstract algebra involves properties of integers and sets. In this chapter we collect the properties we need for future reference.

This textbook survival guide was created for the textbook: Contemporary Abstract Algebra , edition: 8. Since 71 problems in chapter 0: Preliminaries have been answered, more than 228622 students have viewed full step-by-step solutions from this chapter. Contemporary Abstract Algebra was written by and is associated to the ISBN: 9781133599708. This expansive textbook survival guide covers the following chapters and their solutions. Chapter 0: Preliminaries includes 71 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Back substitution.

    Upper triangular systems are solved in reverse order Xn to Xl.

  • Condition number

    cond(A) = c(A) = IIAIlIIA-III = amaxlamin. In Ax = b, the relative change Ilox III Ilx II is less than cond(A) times the relative change Ilob III lib II· Condition numbers measure the sensitivity of the output to change in the input.

  • Determinant IAI = det(A).

    Defined by det I = 1, sign reversal for row exchange, and linearity in each row. Then IAI = 0 when A is singular. Also IABI = IAIIBI and

  • Dot product = Inner product x T y = XI Y 1 + ... + Xn Yn.

    Complex dot product is x T Y . Perpendicular vectors have x T y = O. (AB)ij = (row i of A)T(column j of B).

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Graph G.

    Set of n nodes connected pairwise by m edges. A complete graph has all n(n - 1)/2 edges between nodes. A tree has only n - 1 edges and no closed loops.

  • Hypercube matrix pl.

    Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Length II x II.

    Square root of x T x (Pythagoras in n dimensions).

  • Multiplication Ax

    = Xl (column 1) + ... + xn(column n) = combination of columns.

  • Polar decomposition A = Q H.

    Orthogonal Q times positive (semi)definite H.

  • Pseudoinverse A+ (Moore-Penrose inverse).

    The n by m matrix that "inverts" A from column space back to row space, with N(A+) = N(AT). A+ A and AA+ are the projection matrices onto the row space and column space. Rank(A +) = rank(A).

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Singular matrix A.

    A square matrix that has no inverse: det(A) = o.

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Special solutions to As = O.

    One free variable is Si = 1, other free variables = o.

  • Standard basis for Rn.

    Columns of n by n identity matrix (written i ,j ,k in R3).

  • Symmetric factorizations A = LDLT and A = QAQT.

    Signs in A = signs in D.

  • Tridiagonal matrix T: tij = 0 if Ii - j I > 1.

    T- 1 has rank 1 above and below diagonal.

  • Vector space V.

    Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.