×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Already have an account? Login here
×
Reset your password

Solutions for Chapter 19: Vector Spaces

Contemporary Abstract Algebra | 8th Edition | ISBN: 9781133599708 | Authors: Joseph Gallian

Full solutions for Contemporary Abstract Algebra | 8th Edition

ISBN: 9781133599708

Contemporary Abstract Algebra | 8th Edition | ISBN: 9781133599708 | Authors: Joseph Gallian

Solutions for Chapter 19: Vector Spaces

Solutions for Chapter 19
4 5 0 368 Reviews
22
3
Textbook: Contemporary Abstract Algebra
Edition: 8
Author: Joseph Gallian
ISBN: 9781133599708

Summary of Chapter 19: Vector Spaces

In this chapter, we provide a concise review of this material.

This expansive textbook survival guide covers the following chapters and their solutions. Chapter 19: Vector Spaces includes 32 full step-by-step solutions. Since 32 problems in chapter 19: Vector Spaces have been answered, more than 229260 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Contemporary Abstract Algebra , edition: 8. Contemporary Abstract Algebra was written by and is associated to the ISBN: 9781133599708.

Key Math Terms and definitions covered in this textbook
  • Associative Law (AB)C = A(BC).

    Parentheses can be removed to leave ABC.

  • Back substitution.

    Upper triangular systems are solved in reverse order Xn to Xl.

  • Cramer's Rule for Ax = b.

    B j has b replacing column j of A; x j = det B j I det A

  • Diagonal matrix D.

    dij = 0 if i #- j. Block-diagonal: zero outside square blocks Du.

  • Fast Fourier Transform (FFT).

    A factorization of the Fourier matrix Fn into e = log2 n matrices Si times a permutation. Each Si needs only nl2 multiplications, so Fnx and Fn-1c can be computed with ne/2 multiplications. Revolutionary.

  • Fibonacci numbers

    0,1,1,2,3,5, ... satisfy Fn = Fn-l + Fn- 2 = (A7 -A~)I()q -A2). Growth rate Al = (1 + .J5) 12 is the largest eigenvalue of the Fibonacci matrix [ } A].

  • Four Fundamental Subspaces C (A), N (A), C (AT), N (AT).

    Use AT for complex A.

  • Free columns of A.

    Columns without pivots; these are combinations of earlier columns.

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Least squares solution X.

    The vector x that minimizes the error lie 112 solves AT Ax = ATb. Then e = b - Ax is orthogonal to all columns of A.

  • Left nullspace N (AT).

    Nullspace of AT = "left nullspace" of A because y T A = OT.

  • Minimal polynomial of A.

    The lowest degree polynomial with meA) = zero matrix. This is peA) = det(A - AI) if no eigenvalues are repeated; always meA) divides peA).

  • Nullspace matrix N.

    The columns of N are the n - r special solutions to As = O.

  • Permutation matrix P.

    There are n! orders of 1, ... , n. The n! P 's have the rows of I in those orders. P A puts the rows of A in the same order. P is even or odd (det P = 1 or -1) based on the number of row exchanges to reach I.

  • Random matrix rand(n) or randn(n).

    MATLAB creates a matrix with random entries, uniformly distributed on [0 1] for rand and standard normal distribution for randn.

  • Reduced row echelon form R = rref(A).

    Pivots = 1; zeros above and below pivots; the r nonzero rows of R give a basis for the row space of A.

  • Semidefinite matrix A.

    (Positive) semidefinite: all x T Ax > 0, all A > 0; A = any RT R.

  • Similar matrices A and B.

    Every B = M-I AM has the same eigenvalues as A.

  • Spanning set.

    Combinations of VI, ... ,Vm fill the space. The columns of A span C (A)!

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.