Solutions for Chapter A.3: Introduction to Linear Algebra 5th Edition
Full solutions for Introduction to Linear Algebra  5th Edition
ISBN: 9780201658590
Solutions for Chapter A.3
Get Full SolutionsIntroduction to Linear Algebra was written by and is associated to the ISBN: 9780201658590. This textbook survival guide was created for the textbook: Introduction to Linear Algebra , edition: 5. Chapter A.3 includes 1 full stepbystep solutions. Since 1 problems in chapter A.3 have been answered, more than 6867 students have viewed full stepbystep solutions from this chapter. This expansive textbook survival guide covers the following chapters and their solutions.

Augmented matrix [A b].
Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

Cyclic shift
S. Permutation with S21 = 1, S32 = 1, ... , finally SIn = 1. Its eigenvalues are the nth roots e2lrik/n of 1; eigenvectors are columns of the Fourier matrix F.

Distributive Law
A(B + C) = AB + AC. Add then multiply, or mUltiply then add.

Fourier matrix F.
Entries Fjk = e21Cijk/n give orthogonal columns FT F = nI. Then y = Fe is the (inverse) Discrete Fourier Transform Y j = L cke21Cijk/n.

Hypercube matrix pl.
Row n + 1 counts corners, edges, faces, ... of a cube in Rn.

Incidence matrix of a directed graph.
The m by n edgenode incidence matrix has a row for each edge (node i to node j), with entries 1 and 1 in columns i and j .

Kirchhoff's Laws.
Current Law: net current (in minus out) is zero at each node. Voltage Law: Potential differences (voltage drops) add to zero around any closed loop.

Linear combination cv + d w or L C jV j.
Vector addition and scalar multiplication.

Linear transformation T.
Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

Multiplication Ax
= Xl (column 1) + ... + xn(column n) = combination of columns.

Multiplier eij.
The pivot row j is multiplied by eij and subtracted from row i to eliminate the i, j entry: eij = (entry to eliminate) / (jth pivot).

Orthogonal subspaces.
Every v in V is orthogonal to every w in W.

Outer product uv T
= column times row = rank one matrix.

Projection matrix P onto subspace S.
Projection p = P b is the closest point to b in S, error e = b  Pb is perpendicularto S. p 2 = P = pT, eigenvalues are 1 or 0, eigenvectors are in S or S...L. If columns of A = basis for S then P = A (AT A) 1 AT.

Solvable system Ax = b.
The right side b is in the column space of A.

Standard basis for Rn.
Columns of n by n identity matrix (written i ,j ,k in R3).

Triangle inequality II u + v II < II u II + II v II.
For matrix norms II A + B II < II A II + II B IIĀ·

Tridiagonal matrix T: tij = 0 if Ii  j I > 1.
T 1 has rank 1 above and below diagonal.

Unitary matrix UH = U T = UI.
Orthonormal columns (complex analog of Q).

Vector space V.
Set of vectors such that all combinations cv + d w remain within V. Eight required rules are given in Section 3.1 for scalars c, d and vectors v, w.