Solutions for Chapter A.6: Introduction to Linear Algebra 5th Edition
Full solutions for Introduction to Linear Algebra  5th Edition
ISBN: 9780201658590
Solutions for Chapter A.6
Get Full SolutionsIntroduction to Linear Algebra was written by and is associated to the ISBN: 9780201658590. Since 1 problems in chapter A.6 have been answered, more than 7484 students have viewed full stepbystep solutions from this chapter. This textbook survival guide was created for the textbook: Introduction to Linear Algebra , edition: 5. Chapter A.6 includes 1 full stepbystep solutions. This expansive textbook survival guide covers the following chapters and their solutions.

Augmented matrix [A b].
Ax = b is solvable when b is in the column space of A; then [A b] has the same rank as A. Elimination on [A b] keeps equations correct.

Change of basis matrix M.
The old basis vectors v j are combinations L mij Wi of the new basis vectors. The coordinates of CI VI + ... + cnvn = dl wI + ... + dn Wn are related by d = M c. (For n = 2 set VI = mll WI +m21 W2, V2 = m12WI +m22w2.)

Column space C (A) =
space of all combinations of the columns of A.

Conjugate Gradient Method.
A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax  x Tb over growing Krylov subspaces.

Covariance matrix:E.
When random variables Xi have mean = average value = 0, their covariances "'£ ij are the averages of XiX j. With means Xi, the matrix :E = mean of (x  x) (x  x) T is positive (semi)definite; :E is diagonal if the Xi are independent.

Diagonalizable matrix A.
Must have n independent eigenvectors (in the columns of S; automatic with n different eigenvalues). Then SI AS = A = eigenvalue matrix.

Dimension of vector space
dim(V) = number of vectors in any basis for V.

Free variable Xi.
Column i has no pivot in elimination. We can give the n  r free variables any values, then Ax = b determines the r pivot variables (if solvable!).

Identity matrix I (or In).
Diagonal entries = 1, offdiagonal entries = 0.

Length II x II.
Square root of x T x (Pythagoras in n dimensions).

Linear transformation T.
Each vector V in the input space transforms to T (v) in the output space, and linearity requires T(cv + dw) = c T(v) + d T(w). Examples: Matrix multiplication A v, differentiation and integration in function space.

Norm
IIA II. The ".e 2 norm" of A is the maximum ratio II Ax II/l1x II = O"max· Then II Ax II < IIAllllxll and IIABII < IIAIIIIBII and IIA + BII < IIAII + IIBII. Frobenius norm IIAII} = L La~. The.e 1 and.e oo norms are largest column and row sums of laij I.

Normal matrix.
If N NT = NT N, then N has orthonormal (complex) eigenvectors.

Nullspace matrix N.
The columns of N are the n  r special solutions to As = O.

Particular solution x p.
Any solution to Ax = b; often x p has free variables = o.

Rank r (A)
= number of pivots = dimension of column space = dimension of row space.

Saddle point of I(x}, ... ,xn ).
A point where the first derivatives of I are zero and the second derivative matrix (a2 II aXi ax j = Hessian matrix) is indefinite.

Schur complement S, D  C A } B.
Appears in block elimination on [~ g ].

Singular Value Decomposition
(SVD) A = U:E VT = (orthogonal) ( diag)( orthogonal) First r columns of U and V are orthonormal bases of C (A) and C (AT), AVi = O'iUi with singular value O'i > O. Last columns are orthonormal bases of nullspaces.

Triangle inequality II u + v II < II u II + II v II.
For matrix norms II A + B II < II A II + II B II·