×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide

Solutions for Chapter 3.SE: Linear Algebra and Its Applications 4th Edition

Linear Algebra and Its Applications | 4th Edition | ISBN: 9780321385178 | Authors: David C. Lay

Full solutions for Linear Algebra and Its Applications | 4th Edition

ISBN: 9780321385178

Linear Algebra and Its Applications | 4th Edition | ISBN: 9780321385178 | Authors: David C. Lay

Solutions for Chapter 3.SE

Solutions for Chapter 3.SE
4 5 0 347 Reviews
23
4
Textbook: Linear Algebra and Its Applications
Edition: 4
Author: David C. Lay
ISBN: 9780321385178

Since 20 problems in chapter 3.SE have been answered, more than 30226 students have viewed full step-by-step solutions from this chapter. This textbook survival guide was created for the textbook: Linear Algebra and Its Applications, edition: 4. This expansive textbook survival guide covers the following chapters and their solutions. Linear Algebra and Its Applications was written by and is associated to the ISBN: 9780321385178. Chapter 3.SE includes 20 full step-by-step solutions.

Key Math Terms and definitions covered in this textbook
  • Basis for V.

    Independent vectors VI, ... , v d whose linear combinations give each vector in V as v = CIVI + ... + CdVd. V has many bases, each basis gives unique c's. A vector space has many bases!

  • Column picture of Ax = b.

    The vector b becomes a combination of the columns of A. The system is solvable only when b is in the column space C (A).

  • Conjugate Gradient Method.

    A sequence of steps (end of Chapter 9) to solve positive definite Ax = b by minimizing !x T Ax - x Tb over growing Krylov subspaces.

  • Echelon matrix U.

    The first nonzero entry (the pivot) in each row comes in a later column than the pivot in the previous row. All zero rows come last.

  • Full row rank r = m.

    Independent rows, at least one solution to Ax = b, column space is all of Rm. Full rank means full column rank or full row rank.

  • Gauss-Jordan method.

    Invert A by row operations on [A I] to reach [I A-I].

  • Hankel matrix H.

    Constant along each antidiagonal; hij depends on i + j.

  • Inverse matrix A-I.

    Square matrix with A-I A = I and AA-l = I. No inverse if det A = 0 and rank(A) < n and Ax = 0 for a nonzero vector x. The inverses of AB and AT are B-1 A-I and (A-I)T. Cofactor formula (A-l)ij = Cji! detA.

  • Iterative method.

    A sequence of steps intended to approach the desired solution.

  • Jordan form 1 = M- 1 AM.

    If A has s independent eigenvectors, its "generalized" eigenvector matrix M gives 1 = diag(lt, ... , 1s). The block his Akh +Nk where Nk has 1 's on diagonall. Each block has one eigenvalue Ak and one eigenvector.

  • Kronecker product (tensor product) A ® B.

    Blocks aij B, eigenvalues Ap(A)Aq(B).

  • Network.

    A directed graph that has constants Cl, ... , Cm associated with the edges.

  • Outer product uv T

    = column times row = rank one matrix.

  • Rotation matrix

    R = [~ CS ] rotates the plane by () and R- 1 = RT rotates back by -(). Eigenvalues are eiO and e-iO , eigenvectors are (1, ±i). c, s = cos (), sin ().

  • Row picture of Ax = b.

    Each equation gives a plane in Rn; the planes intersect at x.

  • Row space C (AT) = all combinations of rows of A.

    Column vectors by convention.

  • Solvable system Ax = b.

    The right side b is in the column space of A.

  • Subspace S of V.

    Any vector space inside V, including V and Z = {zero vector only}.

  • Trace of A

    = sum of diagonal entries = sum of eigenvalues of A. Tr AB = Tr BA.

  • Vector v in Rn.

    Sequence of n real numbers v = (VI, ... , Vn) = point in Rn.

×
Log in to StudySoup
Get Full Access to Math - Textbook Survival Guide
Join StudySoup for FREE
Get Full Access to Math - Textbook Survival Guide
×
Reset your password